♪
Kültür bakanlığı sınavında. Ankara thm koro şefi kızını aldı. Urfa korusu şefi kayın biraderini aldı. İstanbul korosu şefi oğlu ve yeğenini aldı. ilginizi çekerse detay verebilirim
ttnet arena - 09.07.2024
♪
Cumhuriyetimizin kurucusu ulu önder Gazi Mustafa Kemal Atatürk ve silah arkadaşlarını saygı ve minnetle anarken, ülkemiz Türkiye Cumhuriyeti’nin kuruluşunun 100. yılını en coşkun ifadelerle kutluyoruz.
Mavi Nota - 28.10.2023
♪
Anadolu Güzel Sanatlar Liseleri Müzik Bölümlerinin Eğitim Programları Sorunları
Gülşah Sargın Kaptaş - 28.10.2023
♪
GEÇMİŞ OLSUN TÜRKİYE!
Mavi Nota - 07.02.2023
♪
30 yıl sonra karşılaşmak çok güzel Kurtuluş, teveccüh etmişsin çok teşekkür ederim. Nerelerdesin? Bilgi verirsen sevinirim, selamlar, sevgiler.
M.Semih Baylan - 08.01.2023
♪
Değerli Müfit hocama en içten sevgi saygılarımı iletin lütfen .Üniversite yıllarımda özel radyo yayıncılığı yaptım.1994 yılında derginin bu daldaki ödülüne layık görülmüştüm evde yıllar sonra plaketi buldum hadi bir internetten arayayım dediğimde ikinci büyük şoku yaşadım 1994 de verdiği ödülü değerli hocam arşivinde fotoğraf larımız ile yayınlamaya devam ediyor.ne büyük bir emek emeği geçen herkese en derin saygılarımı sunarım.Ne olur hocamın ellerinden benim için öpün.
Kurtuluş Çelebi - 07.01.2023
♪
18. yılımız kutlu olsun
Mavi Nota - 24.11.2022
♪
Biliyorum Cüneyt bey, yazımda da böyle bir şey demedim zaten.
editör - 20.11.2022
♪
sayın müfit bey bilgilerinizi kontrol edi 6440 sayılı cso kurulrş kanununda 4 b diye bir tanım yoktur
CÜNEYT BALKIZ - 15.11.2022
♪
Sayın Cüneyt Balkız, yazımda öncelikle bütün 4B’li sanatçıların kadroya alınmaları hususunu önemle belirtirken, bundan sonra orkestraları 6940 sayılı CSO kanunu kapsamında, DOB ve DT’de kendi kuruluş yasasına, diğer toplulukların da kendi yönetmeliklerine göre alımların gerçekleştirilmesi konusuna da önemle dikkat çektim!
editör - 13.11.2022
1. Ses ile ilgili genel bilgiler
2. Yalıtım ile ilgili bilgiler
3. Prodüksyon / performans odasının ses kalitesini yükseltme yöntemleri
Eğer boş bir odada el çırparsanız patlak ve yankılı bir ses duyarsınız.
Bunun birkaç sebebi vardır:
Birincisi duvardan yansıyan ses dalgası (aslında tüm dalgalar), 180 derece ters döner. Yani orijinal dalganın tepe noktası, dip noktası olarak yansır ve gelen dalgayla üst üste binip orijinal dalganın bazı bölümlerini söndürür, bazı bölümlerini yükseltir.
Bu etki sonucunda bazı frekanslar sönümlenirken, bazıları da güçlenir. Bu üretilen ses ne olursa olsun istenmeyen bir durumdur ve önüne geçmek gerekir.
İkincisi, elinizi çırptığınız zaman çıkan ses bütün duvarlardan yankılanır ve kulağınıza çeşitli duvarlardan değişik zaman aralıklarıyla yansımış (yani çeşitli gecikmelerle gelen) orijinal ses gelir. Bu etkiye "reverb" denir. Özellikle odanın şekli küp veya dikdörtgen prizma gibi birbirine dik duran duvarlardan oluşuyor ise bu etki daha da güçlüdür (çünkü defalarca yansır, tıpkı birbirine bakan 2 aynadaki görüntü gibi) ve bunu da engellemek gerekir.
Bunun için “difüzyon” ile gelen dalgaları farklı yönlere dağıtmak gerekir.
Üçüncüsü ise izolasyon ile yüksek frekanslı sesleri kesmek veya emmek daha kolay iken düşük frekanslı yani bas sesleri kesmek daha zordur. Baslar yankılana yankılana odanın kenarlarında ve köşelerinde birikir ve istenmeyen seslere, titeşimlere, uğultulara . neden olur. Üstelik dinlenilen müziğin basını gereksiz derecede yükseltir. Bu yüzden basstrap denilen aparatları yerleştirmek gerekebilir.
SES YALITIMI KONUSUNDA BİR KAÇ AÇIKLAMA
"Ses yalıtımı, daha doğru bir deyimle, ses geçiş kaybının arttırılması, gürültü denetiminin bir bölümüdür. Gürültü denetimi, gereksiz gürültülerin yok edilmesi, gürültünün kaynağında azaltılması, kaynağına hapsedilmesi, yayılmasının önlenmesi, bir bölüme girmesinin önlenmesi gibi, gürültü kaynağından kulağa uzanan yolun, belli bir plana göre adım adım incelenmesi ve alınacak önlemlerin bu göre saptanması anlamına gelir.
Ses yalıtımı ise, sesin bir bölmeyi geçmesi ile ilgili olup, gürültü denetiminde başvurulması her zaman zorunlu olmayan bir adımdır. Bu nedenle, gürültü ile ilgili herhangi bir konuda, önce gürültü denetim planına göre bir inceleme, problemin teknik, pratik ve ekonomik yönden daha az külfetle çözüme kavuşturulmasını sağlayabilir. Bu yazının konusu ise, yalnızca ses yalıtımı olup, unutulmaması gereken bir kaç önemli noktayı anımsatmak ve kimi terim ve kavramlara açıklık getirmektir."
SES YALITIMI KAVRAMI
Yalıtım (tecrit, izolasyon), genelde, çevresinden ayırmak, çevresi ile ilişkisini kesmek ve biraz daha dar anlamda, dış ortamla enerji alışverişini önlemek gibi, kesin sonuç belirten anlamlara gelmektedir. Bu güne kadarki gözlemlerimize göre, ses yalıtımı da, çoğu kez ve özellikle bu tür bir yalıtım yapılmasını isteyenlerin çoğunluğunca böyle kesin sonuç alınabilecek bir işlem gibi düşünülmektedir.
Oysa ses enerjisinin bir duvardan, bir döşemeden, bir pencereden yani herhangi bir bölmeden geçişi, belli oranlarda azaltılabilir fakat pratikte, kesin bir biçimde önlenemez. Yani konu aslında ses yalıtımı değil, geçen sesin azaltılmasıdır. Deyim kolaylığı bakımından ses yalıtımı dense bile, bunun ne anlama geldiğinin unutulmaması, görüşmelerin buna göre yapılması ve beklentilerde bu gerçeğin unutulmaması doğru olur.
Aslında, yabancı dillerde olduğu gibi, tanımlarına uygun olarak (ses) geçiş kaybı (transmission loss / affaiblissement de transmission) ve gürültü azaltımı (noise reduction / réduction du bruit) terimlerinin kullanılması daha uygun olur.
Bu konuda önemli bir nokta da şudur: Ses (ya da gürültü) geçişinin, oradaki gereksinime göre belirlenmiş bir oranda azaltılması gerekir. Bu oranın altında ya da üstünde bir azaltma gereksiz yere yapılmış ve pek bir işe yaramayacak olan bir harcama demektir. Bu boşuna harcama çoğu kez pek te önemsenmeyecek bir büyüklükte olmaz. Bu nedenle de ne yapılacağına titiz bir etüd ve ciddi hesaplar sonucu karar verilmelidir.
YUTMA ÇARPANI
Havada yayılan ses enerjisi (ses titreşimleri) bir yüzeye geldiğinde, genellikle üç olay birlikte olur: Bu enerjinin bir bölümü yansır, bir bölümü soğurulur yani başka tür bir enerjiye dönüşür, bir bölümü de bu yüzeyi geçerek yayılmasını sürdürür. Yutma çarpanları soğurulan ve geçen enerjinin toplamını, yani yansımayan enerji oranını verir. Yani, yutma çarpanı, (Schallcluckgrad / coefficient dabsorption) ses enerjisinin başka bir enerji türüne örneğin ısı enerjisine dönüşerek ses enerjisi türünden yok olduğu oran değildir. Ses enerjisinin, başka bir tür enerjiye dönüşüm oranına eğer soğurma çarpanı dersek, yutma çarpanı, çok özel durumlarda bu çarpana eşit, fakat hemen her durumda soğurma çarpanından daha büyüktür.
Yukarıdaki açıklama, yutma çarpanlarının ölçülme yöntemleri düşünülürse daha iyi anlaşılır. Gerek boru içinde duran dalgalar yöntemi, gerekse yansışım (reverberasyon) süresi bilinen yansışmalı (reverberan) bir iç mekana, yüzölçümü belli bir gereç koyarak yansışım süresindeki değişime göre yutma çarpanını hesaplama yöntemi, yansıyan ses erkesi oranını kullanmaktadır. Yani, yutma çarpanı, yansımayan ses olarak tanımlanmaktadır. Bu konuda Friedrich Bruckmayerin "Schalltechnik im Hochbau" kitabında ve A.C. RAESin "Acoustique Architecturale" kitabında dolaysız ve açık anlatımlar bulunmaktadır.
Pratiğe dönük örnek vermekte de yarar olabilir. Örneğin açık pencerenin yutma çarpanı 1 dir. Yani bu yüzeye gelen ses enerjisi bütünü ile yutulur. Oysa bu . durumda bir soğurma olayı yoktur. Daha ufak açıklıklarda da frekansa bağlı değişik yutma çarpanları verilmiştir. Bu ufak açıklıklarda kimi frekansların yansıması ve daha belirgin bir kırınma (diffraction) olayı söz konusudur. Fakat ses enerjisi başka tür bir enerjiye dönüşmemektedir.
SESİN YUTULMASI VE YALITIMI
Genelde yutma çarpanları, soğurma çarpanları gibi düşünülmekte . ve ses yalıtımında gereçlerin yutma çarpanlarından medet umulmaktadır. Aşağıda sesin soğurulması ve geçmesi olaylarına açıklık getirilmeye çalışılacaktır.
Ses enerjisinin soğurulması, başka tür bir enerjiye dönüşmesi anlamına gelir. Bu enerji türü genellikle ısı enerjisidir. Bu enerji türü değişimi, ses enerjisinin havada yayılması ile hava moleküllerinin kazanmış olduğu artı devingenliğin, bu moleküllerin, gözenekli gereçlerin gözenek cidarlarına sürtünmesi sonucu azalması ile, yani kısacası sürtünme ile, ya da havada oluşan akustik basıncın (hava basıncında ses frekansına bağlı eksi-artı, devirsel değişimlerin) esneyebilen bir bölmenin bir yanında oluşturduğu devirsel basınç değişimlerinden ötürü bu bölmenin şekil ya da konum değiştirmesi ile, yani bu enerjinin bu “iş” için harcanması ile olur.
Burada dikkatlerin çekilmek istendiği nokta soğurulma oranlarıdır. Bunlar aritmetik oranlardır. Oysa algılanan ses düzeyi logaritmasal bir büyüklüktür. Sessel yeğinlik, santimetre kareye gelen güç (µW/cm2) olarak verilir. Algılanan ses (akustik basınç) ise bunun ondalık logaritması ile ilgilidir. Yani, örneğin ses enerjisinin yarı yarıya azalması (% 50 oranında yutulmuş olması), ses basınç düzeyinde ancak 3 dB lik bir düşme sağlar. Bu da ancak algılanabilen çok ufak bir değişikliktir. Ses enerjisinin % 90 oranında azalması yani 10 kat azalması ses basınç düzeyinde 10 dB, bu enerjinin % 99 oranında azalması yani 100 kat azalması 20 dB lik bir düşme sağlar. Oysa bir ses yalıtımı gereksinimi ortaya çıktığında çoğu kez 40~50 dB düzeyinde bir azaltma söz konusu olmaktadır. Demek ki, kullanılabilir kalınlıktaki bir gerecin, yutma çarpanı 0.99 olsa bile, bu gereç ses yalıtımı için kullanılamayacaktır.
Akla şöyle bir soru gelebilir: Acaba sesin, örneğin cam yünü, taş yünü, keçe vb. gözenekli gereçler kullanılarak geçmesi azaltılamaz mı? Bu sorunun yanıtı yukarıdaki açıklamadan çıkarılabilir; Bu yolla geçen seste belli bir azalma elde etmek isteniyorsa, bu gözenekli gereçleri en az 50~60 cm kalınlıkta kullanmak gerekir. Bu ise ne yapımsal, ne de ekonomik açıdan akılcı bir çözüm olmaz ve kolayca da uygulanamaz.
YUTMA ÇARPANLARININ KULLANIM ALANI
Esas amaç ses basınç düzeyinin gerekli oranlarda düşürülmesi olduğuna göre, yutma çarpanlarından, bu çarpanların, tek bir süreç içinde, peşi peşine bir çok kez kullanılması durumunda yararlanılabileceği anlaşılmaktadır. Bu da yalnızca iç mekan akustiğinde söz konusudur.
Bir iç mekanda, karşılıklı yüzeyler arasında ses bir çok kez yansıyacak ve her yansımada belli bir oranda yutulacaktır. Bir iç mekanın iç yüzeyleri arasında peşi peşine yansıyan seste her defasında, eğer yukarıda verilen örnekteki gibi % 50 bir enerji azalması olursa, ve havada sesin yayılma hızının yaklaşık 340 m/s olduğu düşünülürse, yansışmış ses düzeyinin, ortalama bir yansışım süresi içinde büyük oranda düşeceği anlaşılır.
Bu sesin bir yüzeyde yutulması olayının peşi peşine pek çok defa olması, yani yansıma çarpanının tek bir süreç içinde pek çok defa kullanılması sonucudur.
Örneğin, 8x20x35 m kenarları olan dikdörtgenler prizması biçiminde bir iç mekanda, ortalama serbest yol (yani peşi peşine iki yansıma arasında sesin geçtiği yolların ortalaması) 9.8 metredir. Böyle bir iç mekanın kullanış amacına göre hesaplanan optimal yansışım süresinin 1.5 saniye olacağı düşünülebilir. Ses bu süre içinde 340x1.5/9.8= 52 kez yansıyacaktır. Algılanabilen yansışım olayının yansışım süresinin ilk 1/3 bölümünde olduğu düşünülürse, bu 0.5 saniyelik süre içinde bile ses 17 kez yansıyacaktır. Her yansımada 0.5 oranında yutulan ses enerjisi, 17 yansıma sonunda (0.5)17= 0.0000076 oranında azalacak yani bu süre içinde ses enerjisinin % 99.99924 ü yutulmuş olacaktır.
Bu örnekte 5600 m3 hacmi olan, yani oldukça büyük bir iç mekan düşünülmüştür. Daha ufak iç mekanlarda ortalama serbest yol daha kısa olacak, optimal yansışım süresi içinde yansıma sayısı daha fazla olacak ve yutma çarpanının etkisi çok daha yüksek olacaktır.
Sesin bir bölmeyi geçmesinde ise, bu çarpan bir kez kullanılmakta, yani yutulmayan ses erkesi yukarıdaki örnekte olduğu gibi yaklaşık milyon kez azalmamakta, yalnızca yarıya inmekte bu da ses yalıtımı bakımından bir anlam taşımamaktadır.
Sonuç olarak şu söylenebilir: Sesin bir bölmeyi geçmesi, sesin soğurulması yolu ile değil, sesin belli oranlarda durdurulması yolu ile yani Berger-kütle yasasının uygulanması ve ona özgü hesaplara göre önlem alınması ile istenen ölçüde azaltılabilir. Yutma çarpanları, iç mekan akustiğinde, yansışım süresi hesaplarında ve iç mekan gürültü denetiminde kullanılır. Ses yalıtımında değil. Ses yalıtımı formülleri, ses geçiş kaybını dB cinsinden yani logaritmasal büyüklük olarak verir. Oran ya da çarpan olarak değil. Gereçlerin, akustik açıdan iki türlü özelliği vardır: Yutma çarpanı ve ses geçiş kaybı. Bu iki özelliğin kullanılış yerlerini karıştırmamak gerekir.
SES YALITIMINDA SESİN YUTULMASINDAN DOLAYLI YARARLANMA
A ve B gibi bitişik iki iç mekan düşünüldüğünde A ile B arasındaki bölmeden geçen sesin azaltılması yukarıda açıklandığı gibi olur. Ancak, bir iç mekanda ses kaynağından çıkan sesin oluşturduğu ses basınç düzeyi, bu iç mekanın yüzeylerinde sesin peşi peşine yansıması ile yükselir.
Dolayısı ile A ile B arasındaki bölmeye gelen ses enerjisi de yansışım olayı ile artmış olan enerjidir. Ses kaynağının bulunduğu iç mekanda, örneğin A da, iç yüzeyler yutma çarpanı yüksek gereçlerle kaplanırsa, yansışım nedeni ile olan bu yükseliş azalır ve ara bölmeye gelen ses enerjisi de azalır. Doğaldır ki bu azalış dB cinsinden pek önemli değildir ve hesaplanması gerekir.
Aynı biçimde sesin geçtiği iç mekanda da, örneğin B de, ara bölme ses kaynağını oluşturur. Burada da ses düzeyi yansışımla yükselir. İç mekanın ortalama yutuculuğu yükseltilerek, yani yansışım süresi kısaltılarak ses basınç düzeyi düşürülebilir.
Ancak, yinelemek gerekir ki, bu yolla elde edilecek kazanç pek önemli değildir ve ancak, sesin geçtiği ara bölmede gerekli ses yalıtımına çok yaklaşılmış ta daha fazlası elde . edilemiyorsa, bu yolla, işe yarar bir kazancın elde edilip edilemeyeceği hesaplanabilir.
AKUSTİK MALZEME
Bu başlık altında “akustik tavan” “ses yutucu malzeme” ve benzeri deyimlerin anlamları üzerinde durulacaktır. Genelde ışığın yansıması olayı ile sesin yansıması olayı birbirine benzetilmekte ve sesin yansımasında, görsel algılama ile ilgili olması nedeni ile, daha kolay algılanan ışığın yansıması örnek alınmakta yansımayan bölümün de yutulmuş olacağı düşünülerek “ses yutucu malzeme” gibi bir kavram oluşturulmaktadır.
Işığın dalga boyu 380-780 nanometre arasındadır. Yani tayfsal genişliği yaklaşık bir oktavdır. İnsan kulağını etkileyen sesin dalga boyu ise yaklaşık 2 santimetre ile 20 metre arasında değişmekte yani tayfsal genişliği 10 oktavı bulmaktadır. Bir başka deyişle, en yüksek frekanslı ışık ışınımının (mor renkli) frekansı en alçak frekanslının (kırmızı renkli) iki katı iken, en ince sesin frekansı en kalın sesin frekansının 1000 katını aşmaktadır (16~18000 Hz). Çok özel durumlar söz konusu olmadıkça yüzeylerin ışığı yansıtma çarpanları dolayısı ile yutma çarpanları fazla değişmez.
Yani bir yüzey koyu renkli ise günışığı altında da, normal lamba ışıkları altında da koyu renkli, açık renkli ise açık renklidir.
Oysa ince sesler ile kalın sesler arasındaki çok büyük frekans farkı, bunların, kimi fizik özelliklerini büyük oranda değiştirir. Özellikle değişik gereçlerin (malzemelerin) yutma çarpanlarında frekansa göre büyük farklılıklar görülür. Bu farklılıklar sesin yutulma süreçleri düşünüldüğünde kolayca anlaşılır. Burada kuramsal açıklamalar yerine tanınmış bir kaç firmanın asma tavan gereçlerinin ve normal mimari kullanımda yer alan kimi gereçlerin yutma çarpanlarının frekansa göre nasıl değiştiğini gösteren örnekler daha uyarıcı olacaktır.
Özetlemek gerekirse, “akustik tavan”, “ses yutucu malzeme” gibi toptan niteleyici . kavramların gerek iç mekan akustiğinde, gerek iç mekanda oluşan gürültülerin denetiminde bilimsel bakımdan pek bir anlamı yoktur. Bu gibi gereçler 125 Hzden 4000 Hze altı frekanstaki yutma çarpanları ile nitelenmeli ve kullanılış alanları ona göre belirlenmelidir. Yani, önce azaltılacak gürültünün spektral analizi yapılmalı, hangi frekansların daha fazla yutulması gerektiği anlaşılmalı ve kullanılacak gereç buna göre seçilmelidir.
Kaldı ki akustik tavan ya da ses yutucu malzeme diye adlandırılan gereçlerin pek büyük bir çoğunluğu, yalnızca yüksek frekanslarda etkilidir. Yutma çarpanları bu frekanslarda yüksektir. Yani yalnızca ince sesleri yutarlar. Oysa yüksek frekanslı sesler zaten çok büyük oranda havada yutulur. Sesin, frekansa göre havada yutulma oranları 1/m cinsinden şöyledir.
125 250 500 1000 2000 4000 Hz
0.00 0.00 0.00 0.03 0.07 0.21 [1/m]
Normal giysili, çocuk, büyük, ayakta ya da oturmuş insanların da yutma çarpanları, yüksek frekanslarda, alçak frekanslardakilerin yaklaşık iki katıdır. Halı, perde, vb. şeylerin yutma çarpanlarının da, yüksek frekanslarda, alçak frekanslara göre çok daha yüksek olduğu düşünülürse, iç mekanda oluşan gürültülerin denetiminde ve iç mekan akustiğinde esas problemin, alçak frekansların yutulması olduğu anlaşılır. Bu problem de, özellikle, ince lambriler, kenarlarından tutturulmuş cam ya da metal levhalar, ince asma tavan kaplamaları, yani titreşebilen levha türünden gereçlerle çözülebilir.
SES YALITIMINDA FREKANS
Yukarıda değinildiği gibi, ses yalıtımında, ses geçiş kaybını veren formüller kullanılır. Titiz bir hesapta, ses geçiş kaybını frekansa göre veren formüllerin kullanılması gerekir. Bu formüllere bakıldığında, ses geçiş kaybının, sesin geçtiği bölmenin birim yüzey ağırlığının (kg/m2) ondalık logaritması yanı sıra yükselen frekansla da arttığı görülür. Burada da yine asıl önemli . olan alçak frekanslardaki ses geçiş kayıplarıdır.
SONUÇ
Başta da değinildiği gibi, bu yazıda, açıklanmasının belli bir öncelik taşıdığı düşünülen bir kaç konu ele alındı. Aslında, akustik önlemler, çok kapsamlı bir bütün oluşturur. Her özel konuya bu bütünlük içinde yaklaşmak gerekir. Bu nedenle akustikte başarı kolay değildir.
Öte yandan, akustik önlemler, genelde önemli harcamalar gerektirir. Başarı ile sonuçlanmayan uygulamalara harcanan para genelde ikinci bir kez harcanamaz ve sonuç sineye çekilir. Bunun pek çok örneği görülmüştür. Başarısız, yani isteneni vermeyen bir sonuç, bu açıkça dile getirilmese bile, uzun vadede, kullanılan malzemenin üretici ya da pazarlayıcılarına da zarar verir. Yukarıdaki açıklamalar, bu konuda, hiç olmazsa büyük yanlışların önlenmesini amaçlamaktadır.
Basstrap:
Düşük frekansdaki ses dalgalarının gücünü azaltmak için önüne geçmek yetersiz kalacağından, o frekanslarda titreşen meteryalden oluşan bir yapı ile ses enerjisinin bir bölümünü kinetik enerjiye dönüştürmektir. Burada amaç bas sesleri izole etmekten daha çok odadaki bas seslerin gücünün bir kısmını emmektir. Yani izolasyon malzemesinden daha çok odanın ses cevabında iyileştirme yapacak bir stüdyo malzemesi olarak bakılmalıdır.
Bastrap malzemesi kontrplak olup, en düşük frakansları (80-160Hz) emebilmek için 1/4 inch kalınlıkta, orta–yüksek basları (150-300Hz) emmek için 1/8 inch kalınlıkta olmalıdır.
Referans: ethanwiner.com/basstrap.html
Hazır basstrap planları için: ethanwiner.com/BTPlans.gif
Malzeme listesi için: ethanwiner.com/BTParts.html
Bu yazıya henüz yorum yapılmadı.
Yorumları okumak yada yorum yazmak için sisteme giriniz.